Requirements for Interoperability and Seamless Integration of Different
Robotic Frameworks

Michael Arndt, Max Reichardt, Jochen Hirth, Karsten Berns

Abstract— Many different robotic frameworks exist, each
with its own advantages, disadvantages, peer groups and com-
munities. In many cases, interoperability of different robotic
runtime architectures is desired, but due to the complexity of
converting between data-types and working with multiple build-
systems, interoperability is hindered. This work aims to identify
important design principles that — when satisfied — can enable
a seamless integration of frameworks with little effort. The
approach is validated in a number of real-world experiments
that require data exchange between the two robotic frameworks
RoS and FINROC.

I. INTRODUCTION

In order to increase the quality of robot control systems
and to reduce development effort, research on software
frameworks is of major importance. To perform such re-
search, it is often necessary for institutions to develop and
maintain their own frameworks. As discussed in [1], this
can be perfectly feasible. Competition for the best concepts
and implementations is considered advantageous, as long as
this diversity and heterogeneity does not hinder integration
and reuse of software artifacts across research institutions.
Every researcher should have the freedom to choose his or
her favorite framework.

In the past, however, in the context of international coop-
erations between different institutions, the “framework bar-
rier” problem has been encountered several times: Different
institutions actually wanted to work on joint projects, but
due to the diversity of frameworks and their inability to
easily integrate with each other, things were much harder
than necessary.

Although the good practice of consequently separating
framework-independent software artifacts from framework-
dependent code is increasingly promoted ([1], [2], [3], [4]),
freely available solutions that have derived from research
projects are often highly framework-dependent. In order
to reduce development effort and avoid reinvention of the
wheel, it would be beneficial to use and reuse them neverthe-
less — by creating a bridge to close the gap between various
robotic frameworks, their paradigms of communication, their
middlewares and their data types.

The interoperability between different robotic software
components from different vendors is indeed rather poor and
at an early stage of development, as noted by Smits et al.
[5]. With their work and through efforts of Cote et al. [6],

M. Arndt, M. Reichardt and K. Berns are with the Robotics Research Lab,
Dept. of Computer Sciences, University of Kaiserslautern, Kaiserslautern,
Germany {m_arndt, reichardt,berns}@cs.uni-kl.de

J. Hirth is with Robot Makers GmbH, Kaiserslautern, Germany
hirth@robotmakers.de

steps in integrating multi-vendor, multi-component software
components in the robotics domain have been made. In fact,
we strongly agree with their argumentations and ideas, so this
work can be seen as a continuation of their foundations by
extending it to other frameworks and also other paradigms of
communication, as we will show that not only compatibility
on a data-flow level, but also on a control-flow level can be
achieved between different frameworks.

As interoperability is a quality attribute of robotic soft-
ware and the possibility of realizing interoperability with
little implementation effort is highly desirable, it has been
investigated which practices in framework design help to
achieve this.

II. DESIGN FOR INTEROPERABILITY

In recent years, we have realized interoperability between
the FINROC [4] framework and several other frameworks
including Ros [3], URBI [7], MCA2 [8], Player [9] and
Microsoft Robotics Developer Studio! to a varying degree.
From this experience as well as through literature research,
good practices in framework design have been identified
which allow making frameworks interoperable with little ef-
fort, and lead to low computational overhead of the resulting
systems. These include:

o Building and Linking: Linking two frameworks in one
application typically leads to the simplest solutions?.
This requires that a framework is available as a shared
library that can easily be linked against — without
requiring the use of a certain build system. Furthermore,
there must not be a mandatory main() function.

o Data Types exchanged among components: Ideally, any
C++ data type can be used in component interfaces.
This way, classes from framework-independent libraries
such as, for instance, the PCL (Point Cloud Library)
can be used directly. Notably, this reduces overhead for
data conversion. Therefore, it must be possible to spe-
cify framework-specific serialization without modifying
those classes. C++ operator overloading is a suitable
mechanism to achieve this.

o Component Interfaces: Typically, it is easier to achieve
generic interoperability for data flow than for control
flow. In many cases the former is sufficient. This re-
quires that components can have data inputs and outputs
in their interfaces.

ttp://www.microsoft.com/robotics/

2Possibly, the network transport from one of the frameworks is already
sufficient. Implementing the same network protocol in both frameworks is
another more laborious option.

http://www.microsoft.com/robotics/

ITII. INTEGRATING FINROC AND ROS

As an example of how well interoperability can be estab-
lished between two robotic frameworks that fulfill the above-
mentioned criteria, this section shows some technical details
of how ROs and FINROC are connected. Both data- as well
as control-flow between the two is possible using a ROS in-
teroperability plugin for the FINROC framework. This plugin
also acts as a ROS node. It can on the one side communicate
with FINROC components and on the other side, it connects
to a ROS core, being able to publish/subscribe to topics and
also being able to perform and receive requests/responses on
services. The overall architecture with all possible use-cases
is depicted in Figure 1.

The naive way to connect two frameworks involves the
conversion between their standard data types, as indicated
in the first two use-cases of Figure 1. However, complete
conversions between types cause overhead, and they are not
always necessary. In practice, it is much easier just to transfer
native data types through the bridge and only to extract the
really relevant information on demand, deeper down in other
components of the framework.

In order to support arbitrary data types in FINROC, oper-
ator overloading is applied to make types serializable. This
enables them to be used in input, output and RPC ports.
In ROS, message traits are employed for serialization and
for generating a message out of arbitrary objects by adding
checksums, type-information and more.

With this plugin, it is possible to use an arbitrary ROS
message as a data type within FINROC by just once including
a single header file, which adds serialization operators to
all known types that represent ROS messages. On the other
hand, it is also possible to create a ROS message out of
an arbitrary FINROC data type®. In this case, however, the
programmer must manually define the traits for ROS, as there
are parameters which are not automatically deducible, such
as the checksum. Nevertheless, it is only a matter of minutes
to make a FINROC data type usable in Ros*. Control flow
(in the form of remote procedure calls on the FINROC side or
services on the ROS side) is handled using a special FINROC
port called tROSRPCPort.

IV. EXPERIMENTS

To validate the approaches that have been discussed so
far, several experiments with real-world problems have been
conducted — covering different use cases. Two of them are
presented in this extended abstract:

A. Interacting from Finroc with a Pioneer Robot running
ROS

A Pioneer P3-DX mobile robot running ROS with the
p2os and move_base stacks has been used to evaluate the
interaction between FINROC and ROS by using FINROC data
types as ROS messages.

3This term refers to an arbitrary data type with FINROC serialization
operators defined.

4Basically as described at http://www.ros.org/wiki/roscpp/
Overview/MessagesSerializationAndAdaptingTypes

This experiment aims to enhance the results previously
obtained in [10]. In that work, a wireless sensor network had
been used to track a person in an office environment, in order
to optimize the velocity of a mobile robot whilst maintaining
safety. The previous work was conducted exclusively in
FINROC; the new experiment makes use of a heterogeneous
configuration, with the tracking taking place in FINROC
while the robot’s basic drive architecture is based on ROS.
Also, this experiment focuses on the optimization of the path-
planning of the mobile robot and not on velocity adaption.

The structure of the overall system, consisting of FINROC
and ROS components, is visualized in Figure 2. On the
FINROC side, at the lowest level, there is the hardware
interface to the AmICA wireless sensor network nodes. The
raw information from the sensor nodes is processed using
a tracking algorithm based on a particle filter (details can
be found in [10]). The result of this step is a probability
distribution which indicates where people are most likely
situated in the environment. This data is encapsulated in the
native FINROC data type tProbabilisticData.

[FINROC ; RoS
|
I
tProbabi- . tProbabi-
listic- Bridge listic-
Data Data

People Tracking

Fig. 2. Pioneer robot running ROS and using information from FINROC

Once received by ROS, a node analyzes the probabilistic
data and injects information about “virtual” obstacles into
move_base if there are people present in the environment.
Now, depending on the tracking results (i.e. where people
are likely situated), the robot can take different paths from
start to goal. For this experiment the task of the robot was
to always choose the “safest” path, even if there might be
shorter ones.

B. Controlling a Commercial Finroc Robot using ROS

The mobile offroad robot VIONA (Vehicle for Intelligent
Outdoor NAvigation) is a commercially available platform
equipped with double-ackermann-kinematics, developed and
built by Robot Makers GmbH (see Figure 3). The basic
control system of the robot is realized with FINROC (see
Figure 4). It includes the hardware interface, which commu-
nicates with the underlying motor controllers and sensors.

For the implementation of the high level control com-
ponents, an interface is provided, which supports FINROC
and ROS respectively — giving customers the opportunity to
choose their favorite framework for high level robot control.

http://www.ros.org/wiki/roscpp/Overview/MessagesSerializationAndAdaptingTypes
http://www.ros.org/wiki/roscpp/Overview/MessagesSerializationAndAdaptingTypes

FINROC

Converter .
tInputPort . ros: :Publisher
. — <T_finroc;> ——
<T_finroc;> <T_rosi>
— <T_.rosi>
Converter .
tOutputPort) ros: :Subscriber
. —— <T_finrocs> ¥k——
<T_finroco> <T_rosg>
S < <T_ross>
FINROC =
serialization s tInputPort ros::Publisher
traits added to S <T_rosg> <T_rossg>
native ROS type tOutputPort ros: :Subscriber
<T_ross> <T_rosg>
ROS traits
tInputPort ros: :Publisher .
. , - added to native
<T_finrocs> <T_finrocs>
FINROC type
tOutputPort ros: :Subscriber
<T_finrocg> <T_finrocg>
E3 |
B Service Call
_u: tROSRPCPort ervice Later ros::Service
g <T_ros7> > Client <T_ros7>
£ €-—qo--
S
oo . _
Fig. 1. Overview of the FINROC-ROS interoperability bridge

[1]

[2]
[3]

[4]

[51

Fig. 3.

Robot VIONA (© Robot Makers GmbH

REFERENCES

A. Makarenko, A. Brooks, and T. Kaupp, “On the benefits of making
robotic software frameworks thin,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2007), San Diego,
California, USA, October 29-November 2 2007.

“The robot construction kit,” http://rock-robotics.org/.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in IEEE Intl. Conf. on Rob. and Auto. (ICRA), Kobe, Japan,
May 12-17 2009.

M. Reichardt, T. Fohst, and K. Berns, “On software quality-motivated
design of a real-time framework for complex robot control systems,”
in Proceedings of the 7th International Workshop on Software Quality
and Maintainability (SQM), in conjunction with the 17th European
Conference on Software Maintenance and Reengineering (CSMR),
March 5 2013.

R. Smits and H. Bruyninckx, “Composition of complex robot applica-
tions via data flow integration,” in Rob. and Auto. (ICRA), 2011 IEEE
Intl. Conf. on, May 2011, pp. 5576-5580.

I FINROC " IRos ‘
e | |
o NI e)
FiNROG T Bridge |- -~~~ 3
3 User Interface :
| |
| |
| |
\ -
Fig. 4. Control system of VIONA with high-level control implemented

either in FINROC or in ROS

[6]

[71

[8]

[9]

[10]

C. Cote, D. Letourneau, and C. Ra, “Using marie for mobile robot
component development and integration,” in Software Engineering for
Experimental Robotics, ser. Springer Tracts in Advanced Robotics,
D. Brugali, Ed. Berlin / Heidelberg: Springer - Verlag, April 2007,
vol. 30.

J.-C. Baillie, “Design principles for a universal robotic software
platform and application to urbi,” in 2nd National Workshop on
Control Architectures of Robots (CAR’07), Paris, France, May 31-June
1 2007, pp. 150-155.

K. U. Scholl, J. Albiez, and G. Gassmann, “Mca- an expandable
modular controller architecture,” in 3rd Real-Time Linux Workshop,
Milano, Italy, 2001.

B. Gerkey, R. Vaughan, K. Sty, A. Howard, G. Sukhatme, and
M. Matari¢, “Most valuable player: A robot device server for dis-
tributed control,” in Proc. of the IEEE/RSJ Internatinal Conference
on Intelligent Robots and Systems (IROS), Wailea, Hawaii, October
2001, pp. 1226-1231.

M. Arndt and K. Berns, “Optimized mobile indoor robot navigation
through probabilistic tracking of people in a wireless sensor network,”
in Proc. of the 7th German Conf. on Rob. (Robotik 2012). Munich,
Germany: VDI Verlag, Berlin, May 21-22 2012, pp. 355-360.

http://rock-robotics.org/

	INTRODUCTION
	DESIGN FOR INTEROPERABILITY
	INTEGRATING FINROC AND ROS
	EXPERIMENTS
	Interacting from Finroc with a Pioneer Robot running ROS
	Controlling a Commercial Finroc Robot using ROS

	References

